
BMI 713: Computational Statistics for Biomedical Sciences

Lecture 2 - Lab

September 16, 2010

1 Objects

1.1 Creating objects

1.1.1 Vectors

We can construct a vector of ten zeroes and assign it to the symbol v using:

> v <- rep(0, 10) # repeat 0 10 times

> v

[1] 0 0 0 0 0 0 0 0 0 0

Take a moment to consider the assignment of the generated vector to the symbol v. If we do not assign
our vector to some variable, then R will “forget” about it once all of the instructions on the same line have
finished.

The special : operator can be used to create a regular sequence of integers. The more general seq
function can be used to create other integer sequences.

> seq(from=1, to=10, by=1)

[1] 1 2 3 4 5 6 7 8 9 10

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

It is also possible to create a vector by explicitly supplying each value to the c function:

> c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

[1] 1 2 3 4 5 6 7 8 9 10

We often work with vectors of numeric data, but non-numeric vectors will certainly appear from time to
time. Creating vectors with other types of data is no different:

> c("a", "b", "c") # Character-mode data

[1] "a" "b" "c"

> c(T, T, T, F, F) # Logical-mode data

[1] TRUE TRUE TRUE FALSE FALSE

Note: vectors can only contain one type of data.

1.1.2 Matrices

The matrix function is used to create matrices.

matrix(0, ncol=3, nrow=3)

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

1

0 is the data to be converted into matrix form, ncol specifies the number of columns, and nrow specifies the
number of rows. If neither nrow nor ncol are specified, a matrix with a single column will be created. If
only one parameter is specified, the other parameter will be inferred. Notice that we supply only a single 0,
but the resulting matrix contains nine 0s. This is because R recycles the supplied data to fill the requested
number of rows and columns.

To create a matrix from a vector (for example, the values 1 through 9):

> matrix(1:9, ncol=3)

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

In this case, matrix has inferred the value of nrow: the length of the vector 1:9 divided by ncol. If the
length of the supplied vector is not divisible by the specified number of columns (or rows), R will recycle the
vector to fill in the unexpected cells. That is, it will fill as far as the vector will allow, then start again from
the beginning:

> matrix(1:10, ncol=3) # length(1:10)=10, which is not divisible by 3

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 1

[4,] 4 8 2

Warning message:

In matrix(1:10, ncol = 3) :

data length [10] is not a sub-multiple or multiple of the number of rows [4]

1.2 Combining objects

As we have already seen, the c function allows multiple data elements to be combined into a vector. In fact,
the c function is much more general. It can be used, for example, to combine two vectors:1

> v <- c(1, 2, 3)

> w <- c(4, 5, 6)

> c(v, w)

[1] 1 2 3 4 5 6

> c(v, v, v) # Many vectors can be combined at once

[1] 1 2 3 1 2 3 1 2 3

The functions rbind and cbind can be used to attach rows or columns to a matrix:

> rbind(1:3, 4:6, 7:9) # Create a new matrix via rbind

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

> M <- matrix(0, ncol=3, nrow=3)

> M

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

> cbind(M, 1:3) # Attach a new column to an existing matrix

1Actually, c(1, 2) is already an example of combining two vectors. R understands the values 1 and 2 as two numeric vectors

of length 1.

2

[,1] [,2] [,3] [,4]

[1,] 0 0 0 1

[2,] 0 0 0 2

[3,] 0 0 0 3

1.3 Indexing (or subsetting) objects

R provides an extremely powerful indexing system via the [] operators. The methods for indexing objects
are in many cases intuitive and consistent across different object types. It is essential to understand that
most indexing operations can be used both to read subsets of an object and to write to them.

1.3.1 Vectors

Vectors are perhaps the simplest objects in R. When data is stored as a vector, each data element is assigned
an index equal to its position in the original data set. That is, the first element in the original data set
is assigned the index 1, the second is assigned 2, and so on. We can access data by index using the []

operators. If v denotes a vector, the syntax is v[index.vector]:

> v <- c(1, 9, 3, 3, 4, 8, 4)

> v[2]

[1] 9

The element at position 2 in v is the number 9.2

index.vector need not be of length 1. For example, we might create index.vector using the : operator
or the c function:

> v[c(2, 6, 1)]

[1] 9 8 1

> v[2:4]

[1] 9 3 3

The elements at positions 2, 6 and 1 (in that order) have been selected and returned in a vector of length 3.
The previous examples read data from vectors, but it is also possible to write (or assign) to multiple

indexes with one statement. For example, suppose we wanted to set the first 3 values of some vector to 0:

> v

[1] 1 9 3 3 4 8 4

> v[1:3] <- 0

> v

[1] 0 0 0 3 4 8 4

1.3.2 Matrices

Matrices are two dimensional vectors (actually they’re arrays, but the distinction will not be explored at the
moment), meaning that each element is indexed by a pair of numbers rather than a single number.3 The
syntax for indexing an array is M[row.vector, column.vector].

> M <- matrix(1:9, ncol=3)

> M

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

2In this case, 2 is index.vector . While it may seem that the single value 2 is not a vector, R treats it as a numeric vector

of length 1.
3It is possible to index a matrix by a single value: R first coerces the matrix into a vector and then indexes the vector as

explained above.

3

> M[1, 1] # Row 1, column 1

[1] 1 # Vector of length 1, mode numeric

> M[c(1, 2), c(1, 2)] # The intersection of rows 1 and 2 and columns 1 and 2

[,1] [,2] # 2x2 matrix, mode numeric

[1,] 1 4

[2,] 2 5

> M[1:2, 1:2] # A convenient equivalent

[,1] [,2]

[1,] 1 4

[2,] 2 5

For convenience, row.vector and column.vector may be omitted to select all rows or all columns, respec-
tively.

> M[1,] # column.vector omitted, so all columns are selected

[1] 1 4 7 # This is the first row of the matrix

> M[,] # The result of omitting both should be obvious

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Using these constructs, it is easy to select a set of rows in a matrix:

> M[c(1,2),] # Get rows 1 and 2 (and, implicitly, all columns)

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

> M[1:2,] # Equivalent

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

In the same manner as vectors, assignments can be made to multiple indexes with a single statement:

> M[1:2, 1:2] <- 0 # Set the top-left 2x2 submatrix of M to 0

> M

[,1] [,2] [,3]

[1,] 0 0 7

[2,] 0 0 8

[3,] 3 6 9

> M[c(1, 3), c(1, 3)] <- 10 # Set the corners to 10

> M

[,1] [,2] [,3]

[1,] 10 0 10

[2,] 0 0 8

[3,] 10 6 10

> M2 <- matrix(1:4, ncol=2)

> M2

[,1] [,2]

[1,] 1 3

[2,] 2 4

> M[2:3, 2:3] <- M2 # Copy M2 into the bottom 2x2 submatrix

> M

[,1] [,2] [,3]

[1,] 10 0 10

[2,] 0 1 3

[3,] 10 2 4

4

1.3.3 Indexing preserves frequency and order

It might be surprising that indexing respects the frequency of the queried positions. That is, it is perfectly
valid to ask for a position more than once:

> v <- c(1, 9, 3, 3, 4, 8, 4)

> v[c(2, 2, 2)] # Produce 3 copies of the value at position 2 in v

[1] 9 9 9

> M <- matrix(1:9, ncol=3)

> M[c(1, 1, 1),] # Produce 3 copies of row 1, using all available columns

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 1 4 7

[3,] 1 4 7

> M[, c(2, 2, 2)] # Produce 3 copies of column 2, using all available rows

[,1] [,2] [,3]

[1,] 4 4 4

[2,] 5 5 5

[3,] 6 6 6

Indexing even preserves order—that is, if asked for positions 2, 6 and 1, they will be returned in that order:

> v[c(2, 6, 1)]

[1] 9 8 1

> M[, c(3, 2, 1)] # Produce columns 3, 2 and 1 (in that order) with all rows

[,1] [,2] [,3]

[1,] 7 4 1

[2,] 8 5 2

[3,] 9 6 3

Combined with the order function, this property can make sorting very simple.

> v[order(v)]

[1] 1 3 3 4 4 8 9

> sort.column <- rnorm(3) # 3 random variables, normally distributed

> M2 <- cbind(M, sort.column)

> M2

sort.column

[1,] 1 4 7 0.6690487

[2,] 2 5 8 -1.2692793

[3,] 3 6 9 -0.9675783

Consider the column M2[, "sort.column"] as a vector:

0.6690487 -1.2692793 -0.9675783

Determine the correct increasing ordering (by index) of this vector:

2 3 1

Select rows from M2 in that order (and select all columns for these rows)

> M2[order(M2[, "sort.column"]),]

sort.column

[1,] 2 5 8 -1.2692793 # Row 2

[2,] 3 6 9 -0.9675783 # Row 3

[3,] 1 4 7 0.6690487 # Row 1

1.4 Boolean subsetting

In the previous sections we used an element’s index to select it from a vector or matrix. It is sometimes
more natural to select elements using boolean (i.e., TRUE or FALSE) values rather than positions. R allows
this by supplying a boolean vector b to the [] operators where b[i] is TRUE if the element at index i should
be selected and FALSE otherwise. For example:

5

> v <- c(1, 9, 3, 3, 4, 8, 4)

Positions 1, 3 and 4 will be selected but 2, 5, 6 and 7 will not

> v[c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE)]

[1] 1 3 3

In the above example, the boolean vector was exactly as long as v. Therefore, each element in v was paired
with its own TRUE or FALSE value. If the boolean vector is shorter than v, it will be recycled :

Select the odd positions

> v[c(TRUE, FALSE)]

[1] 1 3 4 4

This boolean syntax is most natural when using a condition—a boolean expression—to select values of
interest. For example, it is natural to use the syntax to select only those values of v which are not 4:

Show the boolean vector that will be used to subset v

> v != 4 # "!=" means "not equal to"

[1] TRUE TRUE TRUE TRUE FALSE TRUE FALSE

Do it

> v[v != 4]

[1] 1 9 3 3 8

Unlike positional indexing, boolean subsetting cannot change the order or frequency of elements. Elements
are always returned in the same order as they are stored in the vector; and elements always appear exactly
1 or 0 times.

2 State

We have now seen multiple ways to create objects—either by making an entirely new object or by creating
a copy of some subset of another object. Simply creating an object does not modify the state of the system;
that is, once the object has been computed, it is forgotten unless a state changing action is taken. The only
state changing action presented thus far is the assignment (<- or =) operator. The assignment operator has
the following syntax:

variable.name <- value.producing.statement

This command is executed right-to-left: first, value.producing.statement is evaluated and then its
result is stored as variable.name . If no variable named variable.name existed before this command,
one is created; if variable.name did exist before this command, its old value is overwritten with the new
value from value.producing.statement .4 Unless variable.name is overwritten with the same value it
previously held, the state of the system has changed.

2.1 State in R

With the ease of both creating new objects and assigning them to variables, the state of an R process can
become very large very fast. R offers a number of tools to manage its state.

4Care should be taken when assigning to a variable that already exists. When the variable is overwritten, its data is lost

and its original value must be recomputed. In sophisticated analyses, this can cost hours of computing time!

6

Function Example Description
<- x <- 1 Add to or modify existing variables.
rm rm(x) Removes an existing variable.
ls ls() Lists all available variables.
save save(x, file="x.RData") Save one or more variables to disk. It is conven-

tional to use the .RData extension for files con-
taining R variables. The files written to disk can
later be used with...

load load("x.RData") Load a state file (as produced by save) into the
current state.

save.image save.image(file="state.RData") A convenience function: equivalent to save on all
available variables.

3 Loops

The loop is an important example of a programming construct that is inherently state-dependent. Enclosing
a series of commands (a block) in a loop allows the block to be repeated multiple times. Looping—repeating
the block—continues so long as a certain expression evaluates to TRUE. Consider the following pseudo-program
(the following is not a proper R program):

1 command1

2 command2

3 command3

4 if expr is TRUE, go back to 1. Otherwise, go to 5.
5 command4

The above program begins by executing command1 , command2 and command3 in order. Once the program
reaches line 4, it must make a decision. If expr—a boolean expression like x>1—is FALSE, then the program
will move on to line 5 and excute command4 . However, if expr evaluates to TRUE, the program will jump
back to line 1, execute command1 -3 a second time, and then re-evaluate expr to decide if it should repeat
the process yet again. This is the essence of looping.

Let us consider a more concrete example program (again, this is not a proper R program):

1 x <- 0

2 x <- x + 1

3 print(x) # Displays the value of x

4 if x < 5 is TRUE go back to 2; otherwise, exit.

The program begins by creating a new variable x and setting it to 0. Line 2 then sets x to 1 since x + 1

evaluates to 0 + 1 = 1. (Would line 2 make sense without line 1?) Line 3 displays x’s present value. Line 4
evaluates the expression x < 5 to determine if it should exit or jump back to line 2. Since x’s present value
is 1, x < 5 evaluates to TRUE and the program returns to line 2. It is easy to verify by hand that this process
continues to increase the value of x by 1 and print its value until the program exits at x = 5.

The loop in the above program is dependent on the state of x. If line 2 did not change the value of x at
each iteration, the loop would execute lines 2-4 forever. The only loops that do not depend on the state of
the system are loops with constant values for expr : e.g., 0 < 1 or simply FALSE.

3.1 Loops in R

R provides three loop commands: repeat, while and for. repeat is rarely used, so we will focus on the
while and for loops for now.

3.1.1 The while loop

while loops take the form:

7

while (expr) {

command1

...

commandN

}

where expr is a boolean expression (an expression that evaluates to TRUE or FALSE). The braces ({}) are not
necessary if the block contains only a single command. First, expr is evaluated. If it resolves to FALSE, then
the program skips all of the commands in the block and continues execution after the closing brace (}). If
expr evaluates to TRUE, then command1-commandN are executed in sequence and expr is re-evaluated. The
procedure is repeated while expr is TRUE.

The following while loop builds the value 24 in the variable p:

x <- 1

p <- 1

while (x < 5) {

p <- p * 2

}

It is essential to note that the while loop’s “value”5 is not 24—the loop builds up the power of 2 in the
variable p as it executes.

3.1.2 The for loop

for loops take the form:

for (variable in vector) {

command1

...

commandN

}

where variable is a dummy variable and vector is either a vector or a list. The braces ({}) are not necessary
if the block contains only a single command. For each value x in vector, R will first set variable <- x and
then run command1 through commandN. For example, we can implement the sum function using a for loop.
Let v be the vector we wish to sum; then

sum <- 0

for (x in v) {

sum <- sum + x

}

computes the sum of v and stores it in a variable named sum.

5In some recent versions of R, while loops evaluate to the value of the last statement. Taking the value of a loop is very

unnatural and should almost never be done. This behavior has been removed in the most recent R version: while loops now

evaluate to NULL.

8

